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Abstract—Accurate performance projection of large-scale
benchmarks is essential for CPU architects to evaluate and
optimize future processor designs. SimPoint sampling, which
uses Basic Block Vectors (BBVs), is a widely adopted tech-
nique to reduce simulation time by selecting representative
program phases. However, BBVs often fail to capture the
behavior of applications with extensive array-indirect memory
accesses, leading to inaccurate projections. In particular, the
523.xalancbmk_r benchmark exhibits complex data movement
patterns that challenge traditional SimPoint methods. To address
this, we propose enhancing SimPoint’s BBV methodology by in-
corporating Memory Access Vectors (MAV), a microarchitecture-
independent technique that tracks functional memory access
patterns. This combined approach significantly improves the
projection accuracy of 523.xalancbmk_r on a 192-core system-
on-chip, increasing it from 80% to 98%.

I. INTRODUCTION

Performance evaluation is a critical component in the design
and development of modern microprocessors [10]. Architects
construct software models of the CPU to simulate notable
applications. In industrial settings, performance models serve
four primary purposes:

1) Microarchitecture Sandbox: A modeling environment
to implement, debug, and analyze new feature ideas for
future CPU products.

2) Performance Verification: A reference implementation
of performance behaviors to validate against the RTL
design, identifying performance bugs.

3) Software Projection: A forecasting tool to estimate
benchmark scores for future CPUs, informing the prod-
uct team whether the design meets target specifications.

4) Software Tuning on Future Hardware: A virtual
platform for developers to optimize software on pre-
silicon hardware.

Improvements in any of these areas enhance the others. This
paper focuses on the third pillar: software projection.

Software performance projections are typically conducted
using sampling techniques such as SimPoint [4], [5]. Work-
loads are preprocessed through checkpoints, and SimPoint
is used to determine where to collect traces for simulation
through analyzing Basic Block Vectors (BBVs) [6]. Sampling
is necessary because performance simulations are significantly
slower than running applications on silicon. To enhance the
accuracy of projections, we track the performance model’s
accuracy against the silicon it represents. Improvements can

CPU2017 benchmark | 96 cores | 128 cores | 192 cores
500.perlbench_r 0.99 0.98 0.98
502.gcc_r 1.06 1.05 1.05
505.mef_r 0.88 0.90 1.03
520.omnetpp_r 1.04 1.06 1.01
523.xalancbmk_r 0.84 0.82 0.80
525.x264_r 0.99 0.99 0.99
531.deepsjeng_r 1.06 1.06 1.08
541.leela_r 0.99 0.98 0.97
548.exchange2_r 1.02 1.02 1.02
557.xz_r 0.91 0.92 0.93
TABLE I

BASELINE SPECRATE CORRELATION FOR AMPEREONE SOCS.

be made by either refining the model’s accuracy or optimizing
the sampling methodology for selecting which parts of the
application to simulate.

One of the benchmarks we estimate is the SPEC CPU2017
integer suite [3]. Using our in-house performance simulator,
we compare the SimPoint-BBV projected scores for each
component of the CPU2017 integer suite from the performance
model against the AmpereOne A192-32X [1], [2]. The objec-
tive is to achieve a correlation as close to 1.00 as possible.
As illustrated in Table I, the simulation model accurately es-
timates performance within 10% for most benchmark/product
combinations, and within 3% on average. The big outlier is
the underestimation of performance of 523.xalanc by 20% on
the AmpereOne 192-core SoC.

The classic sampling methodologies face limitations with
workloads containing indirect memory accesses of the form
a[b[i]], where data access patterns significantly influence
performance. Such access patterns are prevalent in graph work-
loads and machine learning inference applications [11]-[13].
The same code region can exhibit different microarchitectural
phases depending on memory access characteristics, such as
the program’s working set size and access distribution.

523.xalanc exemplifies this phenomenon. While we have
developed microbenchmarks to isolate this behavior and are
aware of other applications exhibiting similar traits, we
demonstrate it here using a well-known published bench-
mark. 523.xalanc’s memory access patterns illustrate shifts
in microarchitectural phases, observable both on silicon and
in pre-silicon performance models. We introduce the concept
of Memory Access Vectors (MAV) with a methodology that
captures these behaviors and improves sampling accuracy.



II. HISTORICAL WORKS

SimPoint is a well-established methodology that leverages
Basic Block Vectors (BBVs) to identify program phases,
owing to the strong correlation between code signatures and
performance characteristics [9]. A basic block is defined as
a code segment with a single entry and exit point. This
methodology involves counting the occurrences of basic blocks
within a specified instruction window to construct a vector.
These vectors, representing different execution windows, are
then compared using Euclidean or Manhattan distance mea-
sures to determine similarity scores. High similarity scores
indicate that the code executions within those windows are
analogous, suggesting similar microarchitectural phases, such
as instructions-per-cycle (IPC) metrics and cache miss rates.

S. Singh et al. meticulously document this process for SPEC
CPU 2017 [7] and evaluate the accuracy of the methodology
across its sub-components. However, their study notably omits
523.xalanc. Although 623.xalanc is included, it is recognized
that the Xalan application exhibits varied behavior under
different input loads [8]. Upon inquiry, the authors clarified
that 523.xalanc was excluded due to its convergence issues
with the classic technique, resulting in incomplete runs.

Researchers have investigated various methods to improve
the sampling fidelity of SimPoint [16], including the incor-
poration of microarchitectural performance and power met-
rics [17], [18]. Other studies have emphasized the value of
microarchitecture-independent techniques, such as the Reuse
Distance Distribution (RDD) [19] to capture relative mem-
ory access patterns. Although RDD and MAV both focus
on characterizing memory behavior, MAV presents practical
advantages over RDD in certain scenarios. Unlike RDD,
which was designed as an alternative to BBV, MAV was
specifically developed to complement BBV through a straight-
forward weighting mechanism that dynamically adjusts to
an application’s memory intensity. Additionally, RDD’s reuse
calculations are computationally intensive compared to what
MAV offers with frequency counts. Similarly, CompressPoints
[20] identifies program phases using memory compressibility
patterns, though it focuses on compression efficiency of data
rather than analyzing address patterns.

III. MEMORY ACCESS VECTORS

To address phase changes and enhance correlation at high
core counts, we introduce the concept of Memory Access
Vectors (MAV). Analogous to the BBV technique, MAV
segments program execution into instruction windows. Within
each window, it tracks read and write operations to unique
memory blocks in the physical address space. All memory
accesses are recorded based on the functional execution of the
program, independent of microarchitectural caches or TLBs.
Unlike the Reuse Distance Distribution (RDD) concept, MAV
focuses on absolute addresses and access frequencies rather
than deltas between accesses. This distinction is particularly
crucial for refrate-style homogeneous runs, as total counts are
compounded with many cores running.

To effectively utilize MAVs within the SimPoint framework,
a processing flow has been developed that integrates with the
existing BBV methodology:

1. Vector Transformation: When processing Memory Ac-
cess Vectors (MAVs) for similarity comparison, the inverse
of each memory region’s access frequency is computed, and
the vector is sorted in descending order of these inverse fre-
quencies. This step emphasizes regions that are accessed infre-
quently, which are likely to cause cache misses or page faults,
over frequently accessed regions that are likely cached. This
alignment focuses the signature on actual performance impact.
The memory address labels are then discarded, retaining only
the ordered frequency distribution. This transformation shifts
the comparison’s focus to the pattern of performance-critical
accesses rather than specific memory locations.

2. Normalization: Unlike Basic Block Vectors (BBVs),
where each vector is normalized individually, the entire MAV
matrix is normalized by dividing each row by the average
magnitude across all rows. This approach preserves the relative
intensity of memory operations across instruction windows,
providing valuable information about memory pressure in
different program phases.

3. Temporal Locality: Memory access patterns exhibit
temporal locality. Given the focus on large server-class CPUs
with extensive cache hierarchies, longer-term memory reuse
is captured by applying a 0.95 exponential decay over the
previous 10 instruction windows. This method prioritizes
recent behavior while incorporating the lingering effects of
prior memory access patterns.

4. Dimension Reduction: Gaussian Random Projection is
applied to both BBV and MAV matrices, reducing each to 15
dimensions. BBVs are already 15-dimensional by default, so
this ensures that MAVs are given equal weight in terms of
dimensionality. The reduced matrices are then concatenated
to form a combined 30-dimensional representation for each
instruction window.

5. Adaptive Weighting: To prevent MAVs from dominating
the clustering process in code-intensive applications, the MAV
contribution is scaled by multiplying its values by the per-
centage of memory operations in the entire application. This
scaling ensures that MAVs significantly influence phase de-
tection in memory-intensive applications, while BBVs remain
the primary phase indicator in compute-bound applications
with fewer memory operations. This approach allows the
weighting to automatically adapt to the characteristics of each
application without requiring manual tuning. Even in compute-
bound applications with a high ratio of memory operations,
if the data footprint is small or the access pattern is simple,
the MAVs may have a high weight but will exhibit minimal
variability, thus having limited influence on the final selection.

6. Clustering: The combined and weighted BBV+MAV
matrices are then fed into SimPoint’s k-means algorithm for
clustering and representative selection.

This workflow implements MAV in a manner that com-
plements existing SimPoint methodology while addressing its
limitations for workloads with indirect memory access pat-
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Fig. 1. Self-Similarity plots of 523.xalancbmk_r showing BBV, MAYV, and combined BBV+MAV.

terns. The transformation, normalization, and weighting steps
ensure that both code and memory access patterns contribute
appropriately to phase detection.

IV. ANALYSIS
A. Implementation

BBVs can be collected on silicon using Valgrind [14] or
through emulation using QEMU [15]. We chose to implement
MAV by instrumenting QEMU, given its support for future
ISAs. We utilize an instruction length of 10M and run bench-
marks through QEMU to collect data.

The MAV collection and processing involve two steps.
First, a memory granularity must be specified to create the
histogram buckets. Second, each access within the granular
range increments the count in the corresponding bucket. The
chosen granularity should allow for a sufficient number of
buckets within the instruction window to distinguish different
behaviors. A granularity that is too small results in large
vectors that are computationally intensive to process, while a
granularity that is too large fails to capture meaningful mem-
ory access patterns. We selected 4096 bytes as the granularity,
as it aligns with the common memory page size in modern
operating systems and empirically meets practical runtime
requirements. The MAV output consists of a histogram of
access counts for each 4096 byte region, with one vector
per instruction epoch. The computational overhead of MAV
collection is minimal, requiring only histogram updates during
the QEMU data collection phase, and no impact on trace-
collection phase after SimPoints have been identified.

We applied the flow above to identify 30 SimPoint clusters
for the 523.xalanc benchmark, and we share our findings
below.

B. Recurrence plots

Recurrence [21] or self-similarity is a technique employed
in the analysis of music [22], [23] and vision [24] to identify
repeating patterns through deltas in large data matrices. We
also utilize this technique to visualize recurrent behavior in
programs, as observed through the distances between individ-
ual vectors of basic blocks and memory accesses.

The plots in Figure 1 illustrate recurrence in the 980
billion instructions of 523.xalanc, segmented into chunks of
10 million instructions each. The left image presents the
traditional BBV plot, indicating code similarity within the
first 200 billion instructions, which corresponds to the section
of the benchmark executing the Xerces-C++ 2.7 parser. The
subsequent 700 billion instructions, running the Xalan-C++ 1.1
transformer, exhibit more varied behavior. The center image
introduces the new MAV plot, highlighting data similarity
between 100 billion and 200 billion instructions, with in-
creased similarity from 100 billion instructions to the end of
the program.

The discrepancy between these first two images enables
us to isolate the problematic region: the parser accesses a
variety of distinct data regions, despite the recurring code.
Subsequently, the parser is passing its processed data to
the transformer. Our technique combines BBV and MAYV,
weighted according to the percentage of memory instructions,
to produce the image on the right. This combined approach
reveals multiple phases within the first 200 billion instructions,
which are not discernible using BBV or MAV alone.

C. Phase plots

This analysis employs 30 clusters, a common choice for
benchmarks of this complexity level. The integration of BBV
and MAV into the methodology does not necessitate alterations
to the cluster selection process; established SimPoint heuristics
for determining optimal cluster counts remain valid.

The baseline phase plot in Figure 2 provides a detailed
examination of how SimPoint identifies 30 phases and the
decisions it makes for k-means clustering. Using BBV alone,
only two phases cover the first 200 billion instructions (Phase
IDs 2 and 21). This indicates that BBV by itself considers this
region to be homogeneous and requires only two samples’.

Figure 3 illustrates the changes resulting from the combi-
nation of BBV and MAV. SimPoint is now able to discern
a clearer separation for clustering, and increases the sample

IThe two hot methods in Xerces are ValueStore: :isDuplicateOf
and ValueStore: :contains.
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Fig. 3. BBV+MAV phases and SimPoint selections for 523.xalanc.
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Fig. 4. IPC plot of 523.xalanc on AmpereOne silicon.

points for the Xerces region to 12, constituting over a third
of the total clusters. Given the fixed number of clusters, the
samples shift away from the Xalan portion of the benchmark,
which is now perceived as less diverse. Consequently, the
Xerces portion requires more samples to adequately cover
all behaviors. Despite the presence of only two hot methods,
the sample selections count increases, driven by the nature of
varying data being processed.

Alongside these two phase plots, Figure 4 displays the
instructions-per-cycle (IPC) of each 10 million instruction
region on AmpereOne silicon. This plot allows us to verify
whether SimPoint, using the combined BBV+MAV approach,
effectively clusters to represent microarchitectural behavior on
a first-order basis. Overlaying Figure 2 with the IPC plot
reveals that Phase 2 was attempting to cover regions with both
very low and very high IPC, which is clearly inadequate. In
contrast, comparing Figure 3 with the IPC plot shows that
the complex IPC behaviors of the Xerces region are now
represented by multiple samples, with the highest IPC regions
represented by BBV+MAV Phases 4 and 30.

sampling technique 96 cores | 192 cores
523.xalancbmk_r: BBV only 0.84 0.80
523.xalancbmk_r: BBV+MAV 0.95 0.98

TABLE II
CORRELATION OF BOTH SAMPLING TECHNIQUES ON AMPEREONE SOCS.

D. Results

Using the new SimPoints shown in Figure 3, we have
rerun our performance projections through our standard flow.
The result of using these more accurate SimPoints is an
improvement in correlation numbers, bringing the software
projection for the simulation model closer to the silicon’s
reported performance. Table II presents the before-and-after
comparison for the outlier benchmark, demonstrating that the
correlation for the 192-core SoC improved from 80% to 98%.

V. CONCLUSION AND FUTURE WORK

By refining the sampling methodology to add memory
access information, we have increased confidence in the
projections our simulations provide for future products. This
new approach is invaluable for projecting the performance
of applications that exhibit extensive array-indirect memory
accesses and has the potential to enhance the accuracy of
projections for a wide range of benchmarks. As an example,
we showed a correlation improvement on 523.xalancbmk_r,
bringing the estimation within 2% of the 192-core silicon
measurement. Our future work will formalize this sampling
process and explore its applicability to more applications as
well as even larger core counts.
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